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ABSTRACT: In this paper I illustrate how we can use GeoGebra to guide 

learners in the processes of discovering and extending Viviani’s Theorem. 

First, the theorem is formulated as an open-ended task so that students can 

discover the theorem on their own. Second, the theorem is extended to 

exterior points using the concept of signed distance. Third, the theorem is 

modified to extend it to sums of particular lengths of segments and areas. 

Finally, proofs of the conjectures are also included to provide learners a 

complete learning mathematical experience.  
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1. Introduction 

 

One of the most motivating features of using Dynamic Geometry, such as 

GeoGebra (GG), in teaching and learning mathematics is its capability to 

facilitate the processes of discovering and extending mathematical theorems. 

In this paper, I outline how we, teachers and teacher educators, can use GG 

to discover and extend one of the most elegant, fruitful, and simplest 

theorems of modern Euclidean geometry: Viviani’s theorem.  

 

 

2. Discovering Viviani’s theorem  

To provide students with opportunities to discover Viviani’s theorem, I 

usually reformulate it as a problem:  

Let P be a point in the interior of an equilateral triangle ABC. Let D, E, and 

F be the feet of the perpendicular segments from P to each of its sides (Fig. 

1). a) What property does PD + PE + PF have? b) Interpret geometrically the 

sum of the distances from P to the sides of the triangle, and c) Extend the 

pattern to other points of the plane.    
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Figure 1: Representation of Viviani’s problem 

 

 

Figure 1 displays a graphical representation of the problem. To 

investigate what property the sum of the distances from P to the sides of 

ΔABC (PD + PE + PF) has, we drag point P in the interior of the triangle and 

observe its effect on PD + PE + PF (SumofDistances). Most students are 

delighted to discover that PD + PE + PF is invariant for specific equilateral 

triangles (Fig. 2). That is, PD + PE + PF is a constant. Further dragging 

provides additional empirical evidence that PD + PE + PF seems to be a 

constant for any equilateral triangle.   

 

 

 

Figure 2: PD + PE + PF is invariant 
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To help students discover the geometric interpretation of PD + PE + 

PF, I often suggest to them to drag P to an extreme position, as suggested by 

Polya (1945). In this case, extreme points are points on the sides of the 

triangle or, better still, any of the three vertices of the triangle. Figure 3 

shows the situation when P is very close to vertex C. Again, it is amazing to 

discover that PD + PE + PF has a simple and elegant geometric 

interpretation: it is the length of the altitude of the equilateral triangle ABC.  

 

 

Figure 3: P is an extreme point 

 

 

The use of GG is instrumental in helping learners discover 

mathematical patterns and invariants. Even though GG, or any other dynamic 

geometry software, provides a very high level of conviction regarding the 

veracity of a conjecture, I strongly believe that we, teachers and students, 

should develop mathematical proofs. A mathematical proof allows us not 

only to verify that a conjecture is true, but also to gain a better understanding 

of why the conjecture is true. Having a deeper understanding of why a result 

is valid can, in turn, lead to a whole series of new discoveries, extensions, 

and generalizations. 

To gain insight into why the sum of the distances from any point in the 

interior of an equilateral triangle to its sides is the length of its altitude, I 

guide my students in the construction of a proof. First, I suggest to them to 

construct segments 𝑃𝐴̅̅ ̅̅ , 𝑃𝐵̅̅ ̅̅ , and 𝑃𝐶̅̅̅̅  (Fig. 4). Second, I ask them what, 

besides PD + PE + PF, remains invariant as we drag point P to several 

locations in the interior of the equilateral triangle ABC. A few students 

usually notice that the sum of the areas of the three triangles does not change 



4 
 

as we move P to several locations in the interior of ΔABC. We use this 

invariant property to develop the following proof for our conjectures: Let s = 

AB. It follows now that Area (ΔABC) = Area (ΔBCP) + Area (ΔACP) + 

Area (ΔABP) = 
𝑠(𝑃𝐷)+𝑠(𝑃𝐸)+𝑠(𝑃𝐹)

2
 = 

𝑠

2
(𝑃𝐷 + 𝑃𝐸 + 𝑃𝐹). Because Area 

(ΔABC) = 
𝑠ℎ

2
, we obtain that h = PD + PE + PF. In other words, PD + PE + 

PF is a constant and equals the height of the triangle.  

 

 

Figure 4: Diagram used to prove Viviani’s theorem 

 

 

Our next task is to investigate whether PD + PE + PF is invariant for 

other points of the plane besides the interior points of an equilateral triangle. 

Some students quickly notice both empirically and extending the previous 

proof that this quantity is also invariant for points on the sides of the triangle. 

Putting all of these observations together leads to the statement of Viviani’s 

theorem:  

Viviani’s theorem: Let P be a point in the interior or on one of the sides 

of an equilateral triangle. The sum of the distances from P to the sides 

of the triangle equals the length of its altitude.    

It seems that by now we have completed the investigation of Viviani’s 

theorem. However, nothing could be further from the truth. As suggested by 

Polya (1945), solving problems involves looking back at a solved problem to 

find out whether a particular pattern or solution extends to other situations. 

At this point we then should consider posing “what-if” questions (Brown & 
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Walter, 1990). One of the questions that students usually pose is: what 

happens if point P is outside of the triangle? (Fig. 5).  

 

 

Figure 5: What happens if P is an exterior point? 

 

 

3. Extending Viviani’s theorem to exterior points 

 

Because the new relationship is not obvious, I ask students to look back at 

the relationship of the areas between triangle ABC and triangles ABP, BCP, 

and ACP (Area (ΔABC) = Area (ΔABP) + Area (ΔBCP) + Area (ΔACP)). 

At this point students immediately realize that Area (ΔABC) = Area (ΔABP) 

+ Area (ΔACP) – Area (ΔBCP) from where we obtain the relationship 
𝑠ℎ

2
 = 

𝑠

2
(𝑃𝐹 + 𝑃𝐸 − 𝑃𝐷) or h = PE + PF – PD.  Some students verify this last 

relationship with GG (Fig. 6). In this case the expression PEpPFmPD 

computes PE + PF – PD (PE plus PF minus PD).  
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Figure 6: h = PE + PF – PD 

 

We next tackle the case illustrated in figure 7. Students immediately 

visualize that Area (ΔABC) = Area (ΔABP) – Area (ΔBCP) – Area (ΔACP), 

which leads to the conclusion that h = PF – PE – PD. The other four cases 

produce, respectively, h = PD + PF – PE, h = PD – PE – PF, h = PD + PE – 

PF, and h = PE – PD – PF.  

 

 

Figure 7: h = PF – PD – PE 
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One of the ubiquitous features of mathematics is its endless search to 

unify different cases of a theorem. To this end, we can use the notion of 

directed distances to unify the seven cases for the position of P. We say that 

a distance from a point P located in the exterior of a triangle ABC to one of 

its sides is positive if the point and triangle are on the same half plane 

determined by the side in question. If the point and triangle ABC are on 

different half planes, then the distance is negative. Thus, in figure 6 both 

distances PE and PF are positive while distance PD is negative. Similarly, in 

figure 7 distance PF is positive while both distances PD and PE are negative. 

We can then state the following theorem. 

 

  

Generalized Vivianis’s theorem: The sum of the signed distances from 

any point in the plane of an equilateral triangle to its three sides equals 

the length of its altitude. 

     

 

 

4. Extending Viviani’s theorem to segments on the sides of the 

equilateral triangle  

As argued by Movshovitz-Hadar (1988), almost every mathematical theorem 

is an endless source of surprise. Viviani’s theorem is certainly not an 

exception. By asking and investigating “what-if” questions on our own on a 

regular basis until it becomes a spontaneous act, all of us, teachers and 

learners, have the potential to discover a new conjecture, at least new to the 

discoverer or learner.  

To provide learners with richer experiences in this domain using 

Viviani’s theorem, we should ask them to examine segments 𝐴𝐸̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅ , and 

𝐵𝐹̅̅ ̅̅ , as displayed in figure 8a, and make a conjecture about them. Initially 

only a few students may notice the pattern but after suggesting considering 

AE + CD + BF, almost all of them may conjecture with the help of GG that 

such a sum is a constant and a few may further notice that the constant is the 

semiperimeter of ΔABC (Fig. 8b). Notice that AEpCDpBF in figure 8b 

represents AE + CD + BF. Further dragging of point P in the interior of the 

triangle provides additional evidence to support the conjecture.  
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Figure 8: AE + CD + BF is invariant 

 

 

It is worth mentioning that this conjecture was originally discovered by 

Duncan Clough, a high school student, while he was exploring Viviani’s 

theorem using Dynamic Geometry (De Villiers, 2013). For those students 

and readers who love algebraic proofs, I provide the following argument 

based on coordinate geometry. I should mention that GG was very helpful in 

verifying intermediate steps and finding a couple of mistakes that I made in 

the initial argument.  

 

Place the equilateral triangle as shown in figure 9 and assign coordinates to 

its vertices A and B as shown. The coordinates of point C are: 

 x = 
𝑎

2
 and y = 

𝑎√3

2
.  

Let P be a point located in the interior or on any side of ΔABC. Let D, E, and 

F be the feet of the perpendicular segments constructed from P to each of the 

sides of the triangle (see figure 9). Assign coordinates to points P, D, E, and 

F as indicated in figure 9.  

We then have slope of 𝐴𝐶̅̅ ̅̅  = √3, slope of 𝐵𝐶̅̅ ̅̅  =  – √3, and slope of 𝐴𝐵̅̅ ̅̅  = 0. 

From here it follows that slope of 𝑃𝐷̅̅ ̅̅  = 
1

√3
 and slope of 𝑃𝐸̅̅ ̅̅   = −

1

√3
. Using 

the fact that 
𝑣−𝑐

𝑢−𝑏
 = −

1

√3
 we obtain  

𝑏

√3
  + c = 

𝑢

√3
 + v   (1)  
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On the other hand,  

c = √3 b     (2)  

Substituting (2) in (1) results in b = 
𝑢+√3𝑣

4
 and c = 

√3𝑢+3𝑣

4
. Similarly, 

the relationships between (d, e) and (u, v) can be represented by the 

following system of equations:  

e – 
𝑑

√3
 = v – 

𝑢

√3
    (3)  

e + √3d = √3a    (4) 

Solving (3) and (4) yields d = 
𝑢−√3𝑣+3𝑎

4
 and e = 

3𝑣−√3𝑢+√3𝑎

4
.  

Next, we compute AE, CD, and BF.  

AE = √(
𝑢+√3𝑣

4
)

2

+ (
√3𝑢+3𝑣

4
)

2

= √
4𝑢2+8√3𝑢𝑣+12𝑣2

16
 =  

√𝑢2+2√3𝑢𝑣+3𝑣2

2
 = 

𝑢+√3𝑣

2
 

CD = √(
𝑢−√3𝑣+3𝑎

4
−

𝑎

2
)

2

+ (
3𝑣−√3𝑢+√3𝑎

4
−

√3𝑎

2
)

2

 =  

√4𝑢2+12𝑣2+4𝑎2−8√3𝑢𝑣+8𝑎𝑢−8√3𝑎𝑣

16
 = √

𝑢2+3𝑣2+𝑎2−2√3𝑢𝑣+2𝑎𝑢−2√3𝑎𝑣

4
  

= 
𝑢−√3𝑣+𝑎

2
 

BF = a – u  

Thus,  

AE + CD + BF = 
3𝑎

2
, which is the semi-perimeter of ΔABC.  
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Figure 9: Diagram for coordinate proof  

 

 

One habit of mind that we should help students develop is a disposition 

toward solving a problem using a multitude of strategies. The existence of 

right triangles in the geometric configuration suggests using the Pythagorean 

Theorem. Labeling the geometric objects as shown in figure 10 results in the 

following equalities  

 

𝑢2 = 𝑚2 – 𝑃𝐸2    (1)  

𝑣2 = 𝑙2 – 𝑃𝐷2   (2)  

𝑤2 = 𝑛2 – 𝑃𝐹2   (3)  

𝑎2 – 2au + 𝑢2 = 𝑙2 – 𝑃𝐸2 (4) 

𝑎2 – 2av + 𝑣2 = 𝑛2 – 𝑃𝐷2 (5) 

𝑎2 – 2aw + 𝑤2 = 𝑚2 – 𝑃𝐹2 (6) 

Adding the corresponding members of equations (4) – (6), we obtain  

3𝑎2 – 2a(u + v + w) + 𝑢2 + 𝑣2 +𝑤2 = 𝑙2+ 𝑛2 + 𝑚2– (𝑃𝐸2+𝑃𝐷2+𝑃𝐹2)  

so that  

3𝑎2 – 2a(u + v + w) = 0  
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Solving for u + v +w produces u + v + w = 
3𝑎

2
.  

 

 

Figure 10: Diagram for the proof using the Pythagorean Theorem 

 

 

At this point learners might wonder whether we can provide a more 

elegant proof, a proof that would allow us to “see” better why AE + CD + 

BF = 
3𝑎

2
.  One of such proofs is the following:  

 

From every vertex of the triangle construct a perpendicular line to one 

of the two sides of the equilateral triangle as shown in figure 11. Thus, 

𝐴𝐶1
 ⃡      ⊥ 𝐴𝐵̅̅ ̅̅ , 𝐶𝐵1

 ⃡       ⊥ 𝐴𝐶̅̅ ̅̅ , and 𝐵𝐴1
 ⃡       ⊥ 𝐵𝐶̅̅ ̅̅ . Since ∠BA𝐶1 is a right angle 

and m(∠BAC) = 60°, we conclude that m(∠CA𝐶1) = 30°. Because 

∠AC𝐶1 is also a right angle, we know that m(∠𝐴1𝐶1𝐵1) = 60°. 

Similarly, m(∠𝐶1𝐵1𝐴1) = m(∠𝐵1𝐴1𝐶1) = 60°. Thus, Δ𝐴1𝐵1𝐶1 is 

equilateral. From P construct perpendicular segments to the sides of 

Δ𝐴1𝐵1𝐶1. We infer that EC = PG since ECGP is a rectangle. 

Analogically, DB = PH and FA = PI. Thus, EC + DB + FA = PG +PH 

+ PI = h, the measure of the altitude of Δ𝐴1𝐵1𝐶1. But h = 
√3𝑠

2
 where s 

is the measure of the side of Δ𝐴1𝐵1𝐶1. Now, s = 𝐴1𝐴 + A𝐶1 = 
𝑎

√3
 + 

2𝑎

√3
 = 

3𝑎

√3
. Finally, h = 

√3𝑠

2
 = 

√3

2

3𝑎

√3
 = 

3𝑎

2
. Therefore, EC + DB + FA = 

3𝑎

2
. 
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Figure 11: Diagram for an elegant proof of EC + DB + FA = 
3𝑎

2
 

 

5. Extending Viviani’s theorem to interior partial areas of an 

equilateral triangle 

 

One of the powerful features of GG is that it often allows the user to 

visualize possible relationships and investigate effortlessly “what-if” 

questions. To this end, and prompted by the pattern involving specific 

segments discussed in the previous section, the inquisitive learner may 

wonder whether there is a relationship between the sum of the areas of the 

shaded triangles and the area of the equilateral triangle (figure 12).  

 

Figure 12: Is there a relationship between the shaded area and the area of ΔABC? 
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Some students may visualize and conjecture that the relationship 

between the shaded areas and the area of the triangle seems to be 1:2. Then 

they can use GG to quickly verify or refute their conjecture. Figure 13, and 

further dragging of point P, suggests that the conjecture is plausible. Notice 

that in figure 13 SumofAreas represents the sum of the three shaded areas 

while AreaABCover2 represents half of the area of the equilateral triangle.  

 

Figure 13: The shaded area equals the non-shaded area 

 

A proof showing that Area(ΔAPF) + Area(ΔCEP) and Area(ΔBDP) = 
𝐴𝑟𝑒𝑎∆𝐴𝐵𝐶

2
 follows: 

Through P, construct parallel segments to each of the sides of the 

triangle ABC. Thus, 𝐾𝐻̅̅ ̅̅  ∥ 𝐴𝐵̅̅ ̅̅ , 𝐼�̅� ∥ 𝐵𝐶̅̅ ̅̅ , and  𝐽𝐺̅̅ ̅ ∥ 𝐴𝐶̅̅ ̅̅  (figure 14). Let’s 

consider first quadrilateral AIPK, which is portioned into a 

parallelogram AJPK and an equilateral triangle JIP. Since a diagonal 

divides a parallelogram into two congruent triangles, we have that 

Area(ΔAPK) = Area(ΔPAJ). Because an altitude divides an equilateral 

triangle into two congruent triangles, Area(ΔJPF) = Area(ΔIPF). 

Therefore, Area(ΔAPF) = Area(ΔAPK) + Area(ΔIPF). Similarly, 

Area(ΔBPD) = Area(ΔBPI) + Area(ΔGPD) and Area(ΔCPE) = 

Area(ΔCPG) + Area(ΔKPE). In other words, the shaded area equals the 

non-shaded area.      
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Figure 14: Diagram to prove that the shaded area equals the non-shaded area 

 

6. Concluding remarks 

 

In this article I have outlined how we can use GeoGebra to guide learners to 

discover and extend one of the most beautiful and elegant theorems of 

modern Euclidean geometry. In this process, students experience a glimpse 

of real mathematics by making discoveries, formulating conjectures, and 

developing mathematical arguments, which are all activities that are at the 

very core of doing mathematics. I challenge the reader to think of other 

polygons to which we can extend any of the previous results. In this way, the 

reader may experience the thrill of discovering new conjectures and 

theorems, at least new to him or her.    
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